The Nuclear Quadrupole Interaction of $^{204\text{m}}$ Pb in Cadmium Monitored by γ - γ -Perturbed Angular Correlations

W. Tröger, M. Dietrich^{1,5}, J. P. Araujo^{2,5}, J. G. Correia^{3,5}, H. Haas^{4,5}, and the ISOLDE Collaboration⁵

Nukleare Festkörperphysik, Universität Leipzig, Germany

Reprint requests to Dr. W. T.; Fax: +49 (0)341 9732729, E-mail: troeger@physik.uni-leipzig.de

Z. Naturforsch. **57 a,** 586–590 (2002); received April 2, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

For the first time the nuclear probe $^{204\text{m}}$ Pb was produced at the on-line isotope separator ISOLDE at CERN and used for time differential perturbed angular correlation experiments. The electric field gradient of $^{204\text{m}}$ Pb at room temperature in Cd metal was determined to be $V_{zz} = 19(1) \cdot 10^{21} \text{ V/m}^2$. Ab initio-calculations of the electric field gradient for the impurities Pt to Bi in cadmium were performed with the full-potential linearized augmented plane waves code WIEN97 to interpret this result. For Au, Hg and Pb, where experimental results are now available, these agree with the calculations within 10 %.

Key words: Nuclear Quadrupole Interaction; Electric Field Gradient; Perturbed Angular Correlation (PAC); ab-initio Calculations.

¹ Technische Physik, Universität des Saarlandes, Saarbrücken, Germany

² Physics Department, University of Porto, Portugal

³ Physics Department, Instituto Tecnológico e Nuclear (I.T.N.), Sacavém, Portugal

⁴ Bereich Strukturforschung, Hahn-Meitner-Institut Berlin, Germany ⁵ EP-Division CERN, Geneva, Switzerland